
 Non-relativistic metrics with extremal limits

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP09(2009)096

(http://iopscience.iop.org/1126-6708/2009/09/096)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 01/04/2010 at 13:41

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/09
http://iopscience.iop.org/1126-6708/2009/09/096/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
0
9
(
2
0
0
9
)
0
9
6

Published by IOP Publishing for SISSA

Received: July 26, 2009

Revised: August 31, 2009

Accepted: September 10, 2009

Published: September 22, 2009

Non-relativistic metrics with extremal limits

Emiliano Imeronia and Aninda Sinhab
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1 Introduction

During the past year, considerable effort has been focussed on extending the AdS/CFT cor-

respondence to examples where the associated symmetry algebra includes the Schrödinger

algebra [1, 2]. The asymptotic metric in this case reads:1

ds2 = r2
(

−2dudv − r2z−2du2 + dx2
)

+
dr2

r2
+ ds2M , (1.1)

where ds2M is the metric of an appropriate compact manifold which allows (1.1) to be a

solution to the supergravity equations of motion. The direction u is identified with the

CFT time, while v is taken to be compact so that the associated quantum number can be

taken to be the particle number. As such, for non-relativistic setups, the duality is between

a d dimensional CFT and a d + 2 dimensional gravity. The isometry algebra is generated

by the following Killing vectors:

Mij = −i(xi∂j − xj∂i) , Pi = −i∂i , H = −i∂u , Ki = −i(−u∂i + xi∂v) , (1.2)

D = −i(zu∂u + xi∂i + (2 − z)v∂v − r∂r) , N = −i∂v . (1.3)

1In the introduction we put for simplicity the AdS radius l to 1.
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Here z is called the dynamical exponent. The usual AdS case corresponds to z = 1, with

only the metric and the five-form flux being nontrivial and all other fields set to zero.

Solutions with dynamical exponent z = 2 can be obtained starting from z = 1 by means

of a TsT transformation [3–5]. In addition to the metric and five-form, now one also has

the NS-NS two-form turned on. In this case there is an additional Killing vector:

C = −i
(

u2∂u + uxi∂i − r2x2+1
2r2

∂v − ru∂r

)

, (1.4)

which realizes the special conformal extension of the z = 2 algebra.

The extension to the case of finite temperature is obtained by starting with the AdS-

Schwarzschild black hole [3–5]. Here there is also a nontrivial dilaton in the background.

The dispersion relations for excitations look like ω ∼ k2 or, in other words, the particles

are non-relativistic. There have been many further studies of related solutions [6]. 1/N

corrections to z were investigated in [7].

Although the original motivation to realize a dual description of fermions at unitarity

still defies an answer, some lessons have been learnt about solutions with asymptotics that

describe non-relativistic systems. In some sense, we have enlarged the landscape of the

AdS/CFT correspondence. It is of enormous relevance to try to find the universal features

of this non-relativistic sector of the landscape, with the hope of being able one day to

ask and answer the “right” questions. In this spirit, this paper investigates one possible

extension of the AdS/CFT correspondence for non-relativistic theories, that consists of

turning on an extra chemical potential in the CFT, corresponding to an extra charge in

the dual supergravity description.

Another motivation for pursuing this line of questioning is as follows. Recently, a

proposal has been made to study Fermi surfaces using the AdS/CFT correspondence [8].

In the example studied in [8], one considers a charged planar AdS black hole which admits

an extremal limit, i.e. the horizon has a double zero when the temperature T goes to

zero. The Fermi surface is revealed by the appearance of gapless excitations of fermionic

composite operators. The presence of a double zero appears to play a crucial role in this

analysis. A question to ask is how to extend this construction for non-relativistic systems.2

One obvious way to tackle this is to consider the charged planar AdS black hole and

consider its TsT transformation, in the context of type IIB supergravity. Our starting

point is the ten dimensional uplift of the supergravity solution considered in [10], using the

prescription in [11]. The novelty in this case is that, in addition to the metric, five-form,

NS-NS B-field and dilaton, the R-R two-form is also turned on. We present the derivation

of this solution and study some of its properties.

We investigate the near horizon geometry of the TsT-transformed charged black hole

by presenting two configurations of fields which satisfy the full ten-dimensional equations

of motion in the region near the horizon. The first of these two solutions, which is obtained

by means of a TsT transformation of the undeformed near horizon geometry, lacks the

AdS2 factor that is usually characteristic of a double zero horizon [12, 13]. Its isometries

only involve Pi, H and N . The second solution, obtained via a scaling limit following

2Fermions in non-relativistic systems have been studied in [9].
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the definition of near horizon limit given in [12, 13], has the AdS2 isometries but can be

shown to be also the near horizon limit of another black hole solution, without Schrödinger

asymptotics, whose gauge dual is a standard non-commutative dipole theory.

We then consider the thermodynamics of the transformed charged black hole. We

present an analysis in 10 dimensions for the counterterms which reproduces known results

and extend it to our case. The form of the free energy which follows from the Euclidean

action is inherited from the AdS case very much like the zero-charge case.

Another metric that solves the equations of motion is that of the soliton which we

will call the Schrödinger soliton. To obtain this, one performs a double Wick rotation

of the uncharged solution. The resulting geometry no longer has a horizon. Regularity

of the Wick rotated time coordinate now gives us a periodic spatial coordinate. The

resulting solution is nothing but the TsT cousin of the AdS soliton [14]. If one imposes

antiperiodic boundary conditions for fermions in the periodic direction, one can look for a

phase transition between the uncharged black hole and the soliton. This was studied in [15],

where it was claimed that the black hole is the preferred phase at high temperatures, while

the soliton is preferred at low temperatures. We re-examine this case and find that, due

to a relation between the non-relativistic deformation parameter and the parameters of

the soliton solution, a subtlety with the boundary conditions prevents any phase transition

from occurring except for a special radius of the periodic spatial coordinate. We extend this

analysis to the charged case. We show that there is a confinement-deconfinement transition

at zero temperature between the black hole and soliton phases at the special radius.

The paper is organized as follows. We present the TsT-transformed charged black hole

solution in section 2, then we consider its near horizon geometry in section 3. In section 4,

we turn to the thermodynamics of the black hole. We compute the ratio of shear viscosity

to entropy density in section 5. In section 6, we turn to the TsT-transformed soliton and

study the phase structure of the theory. We conclude with a discussion in section 7. Three

appendices complement the main text, appendix A outlining our conventions, appendix B

clarifying some aspects of near horizon solutions and finally appendix C studying the

isometries of the configurations of section 3.

While this work was in progress, we became aware of the overlapping work by Adams

et al. [28].

2 TsT of the charged AdS black hole

We start with the type IIB solution describing a charged AdS black hole, which is the

ten-dimensional uplift of the solution considered in [10]. The non-zero fields are the metric

and the five-form, whose expressions read:

(ds2)(0) =
r2

l2
(

−fdt2 + dx2 + dy2 + dz2
)

+
l2

r2
dr2

f

+l2
(

dα2 + sin2 αdβ2 + µ2
1(dξ1 +A)2 + µ2

2(dξ2 +A)2 + µ2
3(dξ3 +A)2

)

,

F
(0)
5 = (1 + ⋆)

[(

−4r3

l4
dt ∧ dr +

Q

l2
d

(

3
∑

i=1

µ2
i dξi

))

∧ dx ∧ dy ∧ dz
]

, (2.1)

– 3 –
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where

µ1 = cosα , µ2 = sinα cos β , µ3 = sinα sin β , (2.2)

and

f(r) =

(

1 − r20
r2

)(

1 +
r20
r2

− Q2

r20r
4

)

, A = At dt =
Q

l2

(

1

r20
− 1

r2

)

dt . (2.3)

Starting from (2.1), we can obtain a solution with non-relativistic Schrödinger asymp-

totics (1.1) by performing a “TsT transformation” [3] (also called a “null Melvin twist” [4,

5]) along the two-torus parameterized by the light-cone direction x− = 1
2 (t− x) and by an

internal angle ψ. The TsT transformation [16] consists of a T-duality along ψ, followed by

a shift x− → x− − γψ and finally by another T-duality along ψ.

General explicit formulae for the TsT transformation of any type II background were

given for instance in [17] and are reviewed in appendix A. In the case at hand, where

we start from a solution with just the metric and F5 turned on, we do not need the TsT

formulae in full generality, but just the particular case in which we are able to put the

undeformed metric in the form:

(ds2)(0) = (Adx− +K1)
2 + (Bdψ + Cdx− +K2)

2 + ds28 , (2.4)

where ds28 and the one-forms K1, K2 do not depend on x− and ψ. If this is the case, the

NS-NS part of the TsT-transformed solution in the string frame is given by:

ds2 = M(Adx− +K1)
2 + M(Bdψ +Cdx− +K2)

2 + ds28 ,

e2Φ = M ,

B = −γMAB (Adx− +K1) ∧ (Bdψ + Cdx− +K2) ,

(2.5)

where M = (1 + γ2A2B2)−1. Next, the non-vanishing R-R field strengths Fp = Fp +

H ∧Cp−3 of the transformed solution, in the case where the starting solution has only the

five-form turned on, are given by:

F3 = γ ιx− ιψ F5
(0) , F5 + F3 ∧B = F5

(0) , (2.6)

where ι denotes the interior product.

Let us then put the solution (2.1) in the form (2.4). Towards this goal, we first define

x± = 1
2 (t± x) and introduce the following vielbeins for the AdS part:

e0 =
r

l

√

4f

1 − f
dx+ ,

e1 =
r

l

1√
1 − f

(

(1 − f)dx− − (1 + f)dx+
)

,

e2 =
r

l
dy , e3 =

r

l
dz , e4 =

l

r

dr√
f
,

(2.7)

– 4 –
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and for the sphere part:

e5 = ldα , e6 = l sinα dβ ,

e7 = l sinα cosα
(

cos2 β (dξ1 − dξ2) + sin2 β (dξ1 − dξ3)
)

,

e8 = l sinα sin β cos β (dξ2 − dξ3) ,

e9 = l
(

cos2 α dξ1 + sin2 α cos2 β dξ2 + sin2 α sin2 β dξ3 +A
)

.

(2.8)

Notice that the vielbeins (2.8) highlight the structure of the metric as a fiber bundle over

CP
2 (see for example [18]). In fact, if we define a new angle ψ = 1

3 (ξ1 + ξ2 + ξ3), we can

write e9 = l(dψ + P +A) and ds2
CP

2 = (e5)2 + (e6)2 + (e7)2 + (e8)2 so that the sphere part

of the metric becomes:

(e5)2 + . . . + (e9)2 = l2(dψ + P +A)2 + ds2
CP

2 . (2.9)

The solution (2.1) in terms of the vielbeins we have defined reads:

(ds2)(0) =ηabe
aeb ,

F
(0)
5 =(1 + ⋆)

[

− 4

l
e0 ∧ e1 ∧ e2 ∧ e3 ∧ e4

+
2Q

lr3
√

1 − f

(

√

fe0 + e1
)

∧ e2 ∧ e3 ∧ ω
CP

2

]

,

(2.10)

where ω
CP

2 = − l2

2 dP = e5 ∧ e7 + e6 ∧ e8 is the Kähler form on CP
2.

We are now ready to apply the TsT transformation along (x−, ψ) with real parameter

γ, by applying the formulae (2.5)-(2.6) to the solution in the form (2.10). The TsT-

transformed background, in the string frame and in terms of the undeformed vielbeins,

reads:

ds2 = −(e0)2 + M(e1)2 + (e2)2 + . . .+ (e8)2 + M(e9)2 ,

e2Φ = M =
(

1 + γ2r2(1 − f)
)−1

,

B = γr
√

1 − fMe1 ∧ e9 ,

C2 = −γl2At ωCP
2 , F3 = −2γQ

√
f

lr2
e4 ∧ ω

CP
2 ,

F5 = F5 +H3 ∧ C2 = (1 + ⋆)G5 (2.11)

= (1 + ⋆)

[

− 4

l
e0 ∧ e1 ∧ e2 ∧ e3 ∧ e4 +

2Q

lr3
√

1 − f

(

√

fe0 + e1
)

∧ e2 ∧ e3 ∧ ω
CP

2

]

,

Notice that, although the expression for F5 is the same as the one for F5 in the undeformed

background, the Hodge ⋆ is now performed with the deformed metric in (2.11). The result

is that the e1 ∧ e9 components of the five-form are multiplied by a factor M with respect

to the undeformed case. The solution (2.11) can be explicitly checked to satisfy the type

IIB equations of motion in our conventions written in appendix A.

– 5 –
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It will also be useful to compute the four-form potential C4, given by:

C4 =
1√
f

(

−1 +
QAtl

2

r4

)

e0 ∧ e1 ∧ e2 ∧ e3 +
Q

r3
√

1 − f

(

√

fe0 + e1
)

∧ e2 ∧ e3 ∧ e9

+ tanα e6 ∧ e7 ∧ e8 ∧
(

e9 +
Q

r3
√

1 − f

(

1√
f
e0 + e1

))

+
Q

r3
√

1 − f

(

1√
f
e0 + Me1

)

∧ e9 ∧
(

e5 ∧ e7 + e6 ∧ e8
)

.

(2.12)

The above result is obtained starting from the undeformed potential C
(0)
4 of the solu-

tion (2.1) via C4 +C2 ∧B = C
(0)
4 , see (A.10). The expression of C

(0)
4 is given by the same

expression (2.12) without the factor of M in the last line, since we have:

B ∧ C2 = −(M− 1)
Q

r3
√

1 − f
e1 ∧ e9 ∧

(

e5 ∧ e7 + e6 ∧ e8
)

. (2.13)

Going back to the original coordinates of the undeformed background (2.1), we can

rewrite our TsT-transformed charged black hole (2.11) in the string frame as follows:

ds2 =
r2

l2
M
(

−fdt2 + dx2 − γ2r2f(dt+ dx)2
)

+
r2

l2
(

dy2 + dz2
)

+
l2

r2
dr2

f

+ l2
(

M (dψ + P +A)2 + ds2
CP

2

)

,

e2Φ = M ,

B = −γr2M (fdt+ dx) ∧ (dψ + P +A) ,

C2 = −γl2At ωCP
2 ,

F5 = (1 + ⋆)G5 = (1 + ⋆)

[(

−4r3

l4
dt ∧ dr − 2Q

l4
ω

CP
2

)

∧ dx ∧ dy ∧ dz
]

,

(2.14)

where we recall the definition of the function M:

M =
(

1 + γ2r2(1 − f)
)−1

. (2.15)

The solution (2.14) reduces to the known uncharged non-relativistic solution when Q = 0

and (obviously) to the charged black hole (2.1) when γ = 0. Introducing the coordi-

nate system

u = 2γl x+ = γl (t+ x) , v =
1

γl
x+ =

1

2γl
(t− x) , (2.16)

which eliminates the parameter γ from the asymptotic expression at r → ∞, one recovers

the Schrödinger metric (1.1) in the limit. The coordinate u in (2.16) is interpreted as

the CFT time, while v is taken to be periodic to make the number operator N have

discrete eigenvalues.

3 Near horizon geometry

As noted in the introduction, one of the main reasons for us to study the solution presented

in section 2 is the possibility of having a double zero at the horizon and hence an extremal

– 6 –
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limit corresponding to zero temperature. This happens when Q =
√

2r30. In this section

we consider the near horizon geometry of our solution in this extremal limit.

Let us first take a step back and start from the charged AdS black hole (2.1) before the

TsT transformation, namely from the relativistic setup. We write r = r0 + ρ and expand

the fields of the solution, obtaining the following near horizon configuration that solves the

equations of motion of type IIB supergravity:

(ds2)(0) =
r20
l2

(

−12ρ2

r20
dt2 + dx2 + dy2 + dz2

)

+
l2

12ρ2
dρ2

+ l2





(

dψ + P +
2
√

2ρ

l2
dt

)2

+ ds2
CP

2



 ,

F
(0)
5 = (1 + ⋆)

[(

−4r30
l4
dt ∧ dρ− 2

√
2r30
l4

ω
CP

2

)

∧ dx ∧ dy ∧ dz
]

.

(3.1)

The (t, ρ) coordinates clearly span an AdS2 space, which signals an enhancement of the

isometries of the near horizon geometry to SO(2, 1). This is a peculiar feature of the near

horizon region of extremal black holes [12, 13]. The presence of this AdS2 factor has been

crucial for a proposal to study Fermi surfaces using the AdS/CFT correspondence [8], and

we want to study what happens in the non-relativistic case of section 2.

Notice that expanding a black hole solution near its horizon, r = r0 + ρ, is not guar-

anteed to yield a solution to the supergravity equations of motion. In particular, we are

unable to find a suitable truncation of the non-extremal solution of section 2, or of the

usual AdS-Schwarzschild case. However, it has been shown in the relativistic setup that

any extremal black hole admits a near horizon limit [12, 13], a fact that we try to explain

in more detail in appendix B.

In the case of the extremal limit of (2.14), a naive expansion of the metric and the

potentials, by means of which we would for instance put M →
(

1 + γ2r20
)−1

directly,

does not seem to yield a solution to the type IIB equations. In order to find the near

horizon geometry, we then follow a more indirect route that will also allow us to uncover

interesting properties of two different solutions along the way. We start from the near

horizon limit (3.1) of the undeformed background and apply the TsT transformation along
(

x− = 1
2 (t− x) , ψ

)

, in complete analogy to the procedure followed in the previous section.

After the transformation we obtain the following configuration in the string frame:

ds2 =
r20
l2
M0

(

−12ρ2

r20
dt2 + dx2 − 12γ2ρ2(dt + dx)2

)

+
r20
l2
(

dy2 + dz2
)

+
l2

12ρ2
dρ2

+l2



M0

(

dψ + P +
2
√

2ρ

l2
dt

)2

+ ds2
CP

2



 ,

e2Φ = M0 ,

B = −γr20M0

(

12ρ2

r20
dt + dx

)

∧
(

dψ + P +
2
√

2ρ

l2
dt

)

,

– 7 –
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C2 = −2
√

2γρω
CP

2 ,

F5 = (1 + ⋆)

[(

−4r30
l4
dt ∧ dρ− 2

√
2r30
l4

ω
CP

2

)

∧ dx ∧ dy ∧ dz
]

, (3.2)

where

M0 =
(

1 + γ2(r20 − 12ρ2)
)−1

. (3.3)

The above geometry does (obviously) solve the IIB equations of motion. We also see that

it is in fact an expansion of the full solution (2.14) around the horizon r = r0, although

maybe not the most naive one could have imagined.

What has happened to the isometries of the undeformed near horizon solution (3.1)

after the TsT transformation? As usual, the transformation has reduced the amount of

symmetry of the background down to the symmetries that “commute” with it [16], so

the AdS2 factor of (3.1) has disappeared, together with the full SO(2, 1) isometry. It

can be shown after a bit of work that the most general coordinate transformation that

leaves the x, t, ρ part of the metric invariant is the trivial translation of x and t. This is

demonstrated explicitly in appendix C. This is the parallel phenomenon, now happening

near the horizon of the black hole, to the one happening in the full solution, where the

asymptotic Poincaré and conformal symmetry of (2.1) are replaced by the non-relativistic

asymptotic Schrödinger symmetry of (2.14). In this sense, then, we can say that (3.2)

represents the “non-relativistic near horizon limit” of our extremal black hole.

However, there is a way to obtain a near horizon geometry that keeps the AdS2 factor

following the definition of near horizon limit given in [12, 13].3 This definition involves a

specific scaling limit. Starting from (3.2), we rescale t→ t/λ, ρ→ λρ and we consider the

λ→ 0 limit. This leads to the following solution:

ds2 =
r20
l2

(

−12ρ2

r20
dt2 + Mx dx

2

)

+
r20
l2
(

dy2 + dz2
)

+
l2

12ρ2
dρ2

+ l2



Mx

(

dψ + P +
2
√

2ρ

l2
dt

)2

+ ds2
CP

2



 ,

e2Φ =Mx ,

B = − γr20 Mx dx ∧
(

dψ + P +
2
√

2ρ

l2
dt

)

, C2 = 0 ,

F5 =(1 + ⋆)

[(

−4r30
l4
dt ∧ dρ− 2

√
2r30
l4

ω
CP

2

)

∧ dx ∧ dy ∧ dz
]

,

(3.4)

where the dilaton is now constant, since we have:

Mx =
(

1 + γ2r20
)−1

. (3.5)

This solution is not equivalent to (3.2), having been obtained via a scaling limit as de-

scribed above.

3We thank Allan Adams for discussions on this issue.
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We can see that we have recovered the AdS2 factor in the geometry. While (3.4) is a

solution of the equations of motion and an expansion of our extremal black hole solution

(from which it could have been obtained directly by means of an appropriately defined

scaling limit), it has a property that makes us wonder about its meaning in the non-

relativistic context. This property is that the scaled solution (3.4) is also simply a TsT

transformation of the near horizon geometry (3.1) of the undeformed charged black hole,

but performed along the torus (x, ψ) rather than (x−, ψ), as can be easily seen by using

formulae (2.5)-(2.6). In this sense, (3.4) is also the near horizon limit of another black

hole, that is the one obtained from (2.1) via a TsT transformation along (x, ψ). The latter

describes a different dual gauge theory at finite temperature, namely a non-commutative

dipole theory of the kind described in [19], which however does not have non-relativistic

Schrödinger asymptotics, given that the transformation used to get to it does not involve

the asymptotic light-cone direction x−.

One possible interpretation of this fact is that there is a sector where the CFT dual

to the non-relativistic extremal black hole and the dipole field theory share the same

description, this being probably the H → 0 sector corresponding to the scaling limit we

implemented to get to (3.4). Since the AdS2 decouples from the asymptotic geometry, we

expect to be able to describe these low energy states of both these field theories using the

superconformal quantum mechanics dual to AdS2.

The geometry (3.2) seems instead to be more intimately related to the non-relativistic

nature of the solution, and could be used for instance to describe more general states. It

would be interesting to investigate if (3.2) decouples in the same sense as AdS2 and if the

higher energy states can be described using this geometry. Since the proper distance from

any point r = R to the horizon is given by
∫ R
r0
dr/

√
grr and grr has a double pole in the

extremal limit at r = r0, this will work out to be infinity. Hence, it is plausible that (3.2)

does describe a decoupled subsector of the CFT. We leave the detailed examination of these

issues for future work.

4 Thermodynamics

This section is devoted to the discussion of the thermodynamics of our solution. We

Wick-rotate into Euclidean signature t → iτ . The correct identification of thermodynamic

quantities require some care because of the identification of the coordinate u in (2.16) as

the CFT time, see for instance [5]. The Killing vector along the horizon is taken to have

coefficient one in front of the ∂/∂u term:

∂

∂u
+

1

2γ2l2
∂

∂v
=

1

γl

∂

∂t
. (4.1)

so that the temperature has an extra factor of γl in the denominator with respect to what

one would have expected from the periodicity of τ :

T =
r0
πγl3

(

1 − Q2

2r60

)

. (4.2)
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Note that T = 0 in the extremal limit Q =
√

2r30. Equation (4.1) also allows us to derive

the expression for the chemical potential µ1 associated with γ (that we divide by a factor

of l so that it has the appropriate dimensions of energy):

µ1 =
1

2γ2l3
. (4.3)

We have a second chemical potential µ2 associated with the charge Q. In order to define

it, notice that the expression At appearing in the undeformed solution (2.1) comes from

the uplift of a five-dimensional gauge field [10]. In such five dimensional setting, it is then

natural to identify the chemical potential with the r → ∞ limit of At. In our case, although

we did not present an explicit five-dimensional description, we keep the same prescription,

the only difference being that we again take into account the identification of u as the CFT

time. Rewriting A = Atdt = Audu+Avdv, we then define the chemical potential µ2 as:4

µ2 = lim
r→∞

Au =
Q

2γl3r20
. (4.4)

Let us pass to the computation of the free energy, for which we need the on-shell action.

We are going to work in the full ten dimensional space. With the field configuration (2.14),

the Euclidean Einstein frame action we are going to use is (see appendix A):

I = − 1

2κ2

[ ∫

d10x
√
g R− 1

2

∫

(

dΦ∧ ⋆dΦ+e−ΦH ∧ ⋆H+eΦF3∧ ⋆F3 +G5∧ ⋆G5

)

]

, (4.5)

where we recall that G5 is the five-form such that F5 = (1 + ⋆)G5. This term for the

five-form flux, giving a non-zero contribution, has been taken into account following [20].

The on-shell action is divergent so we need to add counterterms at the boundary:

Ict = − 1

2κ2

∫

d9ξ
√
h

(

2K + δ0 + δ1Φ + δ2Φ
2 +

δ3
2
BijB

ij

+
δ4
2
C(2) ijC

ij
(2) +

δ5
24
C(4) ijklC

ijkl
(4)

)

. (4.6)

Here ξ denotes the boundary coordinates, h is the induced metric on the 9-dimensional

space and i, j, k, l denote all indices except the radial one. K is the extrinsic curvature:

K = ∇MN
M =

1√
g
∂M
(√
gNM

)

, (4.7)

with NM the outward normal to the boundary.

One could take the approach of [4, 5] and consider a variational problem which fixes

some of the δi’s above. Here we will fix the coefficients indirectly, by demanding that,

besides of course cancelling the divergences, they reproduce known results in specific limits.

More precisely, we demand that known results for γ → 0 (see for example [10]) and for

Q → 0 [4, 5] are reproduced. This reasoning fixes δ0 = −6
l , δ1 − 2δ3 = − 3

2l (for instance

4Note that in order to match with the conventions of [10], we need to choose L∗ =
√

3L in (2.23) of that

paper.
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we can choose δ1 = − 3
2l and δ3 = 0), δ2 = − 3

16l and δ5 = 0. When the dust settles, the

total Euclidean action turns out to be:

IE = −∆τ∆xV r40
2κ2

[

1 +
Q2

r60

(

1 + 2δ4γ
2lr20

)

]

. (4.8)

Here ∆τ and ∆x are the periodicities of τ and x, while V = V2V5 is the product of

the infinite volume V2 = ∆y∆z of the two spatial gauge theory directions and of the

(dimensionless) volume V5 of the internal compact space. Notice that the periodicity ∆v

of the v coordinate in (2.16) is related to ∆x for any fixed value of u as ∆x = γl∆v.

Assuming we are in a grand canonical ensemble, we can define the grand potential

starting from (4.8) as:

W = IE T = −∆vV r40
2κ2

[

1 +
Q2

r60

(

1 + 2δ4γ
2lr20

)

]

. (4.9)

The identification of the entropy computed from the grand potential with the Bekenstein-

Hawking entropy of the black hole will allow us to fix the arbitrary coefficient δ4. In terms

of the grand potential we have:

S = −∂W
∂T

∣

∣

∣

∣

µ1 , µ2

. (4.10)

On the other hand, the area of the horizon in the metric (2.14), which is γ-independent,

is given by AH = l2r30∆xV , so that the entropy computed via the Bekenstein-Hawking

formula is:

S =
∆xV 2πl2r30

κ2
. (4.11)

Matching (4.10) and (4.11) leads to δ4 = 0. Hence the final expression for the grand

potential, which yields the entropy (4.11), is:

W = −∆vV r40
2κ2

(

1 +
Q2

r60

)

. (4.12)

This is the same expression as in the undeformed charged AdS black hole case, as was

already noted for the Q = 0 case in [4, 5, 21].

We can reexpress the grand potential in terms of the temperature and chemical po-

tentials by substituting (see also [10]):

r0 =
πl3/2T

2
√

2µ1

(

1 +

√

1 +
8µ2

2

π2T 2

)

, γ =
1

√

2µ1l3
,
Q

r30
=

4µ2

πT

(

1 +

√

1 +
8µ2

2

π2T 2

)−1

,

(4.13)

and we can compute, besides the entropy, also the charges associated to µ1 and µ2, whose

expressions are much more easily rewritten in terms of r0, γ and Q:

P1 = −∂W
∂µ1

∣

∣

∣

∣

T , µ2

= −
∆xV 2γl2r40

(

1 + Q2

r60

)

κ2
, (4.14)

P2 = −∂W
∂µ2

∣

∣

∣

∣

T , µ1

=
∆xV 6l2Q

κ2
. (4.15)
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The energy is given by:

E = W + TS + µiPi =
∆vV r40

2κ2

(

1 +
Q2

r60

)

, (4.16)

and since in the grand canonical ensemble the pressure is given in terms of the grand

potential by PV = −W we see from (4.12) and (4.16) that the system satisfies the equation

of state

PV = E (4.17)

appropriate for a non-relativistic CFT in two spatial dimensions.

5 η/s

In this section we turn to the computation of the ratio of the shear viscosity to entropy

density. The argument given in [22] suggests that the ratio should again be 1/4π. We verify

that this is indeed the case. We begin by computing the effective action arising from (4.5)

for a metric perturbation h z
y = e−iωuφ(r). The equation of motion for φ(r) works out to

be of the same form as that given in [5]:

f

r5
d

dr

(

r5f
dφ

dr

)

+
(1 − f)γ2ω2

r4
φ(r) = 0 , (5.1)

with

f =

(

1 − r20
r2

)(

1 +
r20
r2

− Q2

r20r
4

)

. (5.2)

Using this, it is straightforward to check that

η

s
=

1

4π
, (5.3)

as expected. The calculation in the extremal case proceeds similarly except that the near

horizon boundary condition gets replaced by

φ(ω, r) = φ0e
−

iωγ

12(r−r0) (1 + χ1(r)) , (5.4)

with

χ1(r) = − iγ

36r0(r + r0)

(

−3r0 + 2(r + r0) log
r2 − r20
r2 + 2r20

)

. (5.5)

Repeating the calculation for the two-point function (following the steps in [5] for example)

we again get η/s = 1/4π at T = 0. This is the first explicit calculation for η/s at T = 0 for

any system and matches with the extrapolation intuition gained in [10] for the γ = 0 case.
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6 Soliton

Another interesting solution with Schrödinger asymptotics that can be obtained in a

straightforward manner is the TsT-transformed soliton.5 Such solution gives rise to the pos-

sibility of getting phase transitions in a planar setting. The soliton is obtained by a double

analytic continuation starting from our TsT-transformed background (2.14). Specifically:

x→ it̂ , t→ ix̂ , γ → iγ̂ , Q→ iQ̂ , (6.1)

will lead to a solution to the equations of motion with Schrödinger asymptotics. The soliton

can also be obtained by performing the usual TsT transformation on the AdS soliton. The

coordinate x̂ has to be periodically identified for regularity. In order to avoid confusion, we

will relabel r0 by rs, and in the following we will use the subscript s for quantities related

to the soliton and the subscript b for quantities related to the black hole.

Let us study the (t̂, x̂) part of the string frame soliton metric:

ds2 =
r2

l2
M̂
(

fdx̂2 − dt̂2 − γ̂2r2f(dt̂+ dx̂)2
)

. (6.2)

We want to consider the regularity condition at r = rs. Near r = rs, the metric reads:

ds2 = −r
2
s

l2
(1 − γ̂2r2s)

−1

(

dt̂2 + 2
2r6s + Q̂2

r7s
(dx̂2 − (dt̂+ dx̂)2r2s γ̂

2)(r − rs)

)

, (6.3)

and the O(r − rs) term can be written as

2(r − rs)
2r6s + Q̂2

r7s

[

(

dx̂− r2s γ̂
2

1 − r2s γ̂
2
dt̂

)2

+ r2s γ̂
2dt̂2

(

r2s γ̂
2

1 − r2s γ̂
2
− 1

)

]

. (6.4)

Regularity will demand a specific periodicity of the coordinates appearing in the term in

square brackets in (6.4). However, asymptotically v̂ = 1
2γ̂l (t̂ − x̂) is already periodic! The

compatibility of the two conditions then force us to set:

2r2s γ̂
2 = 1 . (6.5)

In other words, it only makes sense to consider the soliton for special values of rs (or γ̂).

The relation (6.5) is not modified for T = 0, which can be seen by expanding to O((r−rs)2).
We emphasize that this feature is only present in non-relativistic systems. This leads to

a crucial difference between the relativistic and non-relativistic case. ∆I = Isol − Ibh in

the relativistic case (γ → 0 or µ1 → ∞) is a function of µ2, T and rs. On the CFT side,

rs controls the radius of the circle on which we are putting the theory and can take any

value. In the non-relativistic solutions, (6.5) imposes a relation between rs and µ1 which

makes ∆I a function of µ2, T, µ1 with the radius of the circle fixed.

In the usual relativistic setting, corresponding to putting the CFT on a circle with

antiperiodic boundary conditions for fermions, the soliton corresponds to the ground state

5We are very grateful to Rob Myers for discussions about the topic of this section, and in particular for

emphasizing that the soliton phase only exists for certain values of the parameters.
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at low temperatures [14]. What happens in the non-relativistic case? As a first step, let

us consider the Q = Q̂ = 0 case that was previously investigated in [15]. One can compute

the difference between the Euclidean actions of the soliton and the black hole, properly

matching the periodicities of the coordinates and putting γ = γ̂, obtaining:

Isol − Ibh = −V π
2γ2l6

2κ2

(

r3s
rb

− r3b
rs

)

(6.6)

(we have renamed r0 = rb for the black hole). There are some crucial differences between

our result and that found in [15]. Firstly, regularity fixes the periodicity of x̂ to be πl2/rs.

This in turn is given in terms of γ̂ in (6.5). The black hole x periodicity ∆xb had to be

matched with the periodicity ∆xs of x̂. This means that only for a special choice of ∆xb
can there be the issue of a phase transition. For general ∆xb the boundary conditions will

not match and there will be no such phase transition.

Bearing in mind the subtlety due to (6.5) as discussed above, let us now consider the

phase structure when the charged black hole, Q 6= 0, is involved. The soliton solution we

consider is the one obtained by the double analytic continuation of the uncharged TsT-

transformed black hole, so Q̂ = 0, and in order to match the chemical potentials we

turn on a constant At̂.
6 Our interest is in the phase transition between the black hole at

zero temperature and the soliton solution we have just described. The existence of this

possibility is due to the presence of the additional tunable chemical potential µ2 related to

the R-charge Q, and has not been previously explored even in the relativistic case. The

Euclidean action for the soliton turns out to be:

Isol = −∆τs∆xsV r
4
s

2κ2
= −∆τs∆xsV

8κ2γ̂4
(6.7)

where we have used the relation (6.5).

For the zero temperature charged black hole, we start from the relations (4.13) and

take the T → 0 limit, getting:

r0
T→0−−−→ l3/2µ2√

µ1
,

Q

r30

T→0−−−→
√

2 . (6.8)

Using these relations, the Euclidean action for the charged TsT-transformed black hole at

zero temperature turns out to be:

Ibh, T=0 = −∆τb∆xbV 3 l6µ4
2

2κ2µ2
1

, (6.9)

where we notice that the τ periodicity goes to infinity in the extremal limit. In order to

compute the difference of the actions, we need to match the periodicities and to put γ = γ̂

so that there is only one chemical potential µ1, which is equal for the soliton and the black

hole. Furthermore, the black hole x periodicity has to be matched with that of x̂. As

6We could also have considered the double analytic continuation of the charged black hole, Q̂ 6= 0, in

which case, in order to have the same asymptotics, we should also have turned on a constant Ax in the

black hole.
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discussed above this restricts our discussion to special choices of the circle periodicity. The

final result is:

∆I = (Isol − Ibh)|T=0 = −∆τ∆xV l6

2κ2µ2
1

(

µ4
1 − 3µ4

2

)

. (6.10)

Thus, we identify the following phases:

µ1 > 31/4µ2 soliton ,

µ1 < 31/4µ2 black hole .
(6.11)

In the absence of µ2, the soliton would have been the preferred phase. The novelty here

is that when µ2 becomes sufficiently large, the black hole phase begins to dominate. Thus

we have a confinement-deconfinement phase transition at zero temperature. This phase

transition is also expected in the relativistic case with a function of rs replacing µ1.

7 Conclusions

In this paper we presented an example of non-relativistic metrics admitting an extremal

limit. One of the motivations for studying this solution was the presence of a double zero

at the horizon which seems to be relevant for studying Fermi surfaces along the lines of [8].

It will be interesting to study in what sense the non-relativistic fermion correlations differ

from their relativistic counterparts.

We also studied the near horizon limit of the non-relativistic charged black hole back-

ground, and found two configurations of fields that solve the equations of motion in the

neighborhood of the horizon. It will be of relevance to study the validity of the two

configurations to describe different sectors of the dual field theory and in particular to

understand better, on the dual side, in which sense the non-relativistic CFT reduces to a

non-commutative dipole theory in the specific decoupled AdS2 × R3 × S̃5 subsector de-

scribed by (3.4). It is tempting to conjecture that (3.2) will describe a decoupled subsector

of the CFT as well which will include higher energy excitations. More generally, it will

be desirable to extend the analysis in [13] to the context of non-relativistic extremal black

holes, understanding the minimum set of conditions needed for a near horizon solution to

exist in the sense presented in this paper. Does the double zero at the horizon guarantee

that this will happen?

We considered the TsT-transformed soliton and found that there is a novel phase

transition at T = 0 where, for sufficiently large chemical potential associated with the

R-charge, the black hole is the preferred phase. We did not consider the full phase space

which includes the “charged” Schrödinger soliton with the extra parameter Q̂. In this case

the planar black hole which competes in the path integral will have a constant Ax turned

on. On the CFT side, this will have the interpretation of turning on Wilson loops. We

leave the exploration of this avenue as future work.

An important consequence of the TsT transformation and of imposing the periodicity

of v is that the radius rs of the Schrödinger soliton takes only special values as dictated

by (6.5). Does it make sense to lift this restriction and ask if there are more general

solutions which may in fact dominate in the path integral? In order for this to happen, the
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relevant geometry should close off before r = rs. It will be very interesting to investigate

this possibility.

The R-charged planar AdS black hole has recently featured in another interesting

context. As is well known the famous KSS bound conjecture states that the ratio of the

shear viscosity to entropy density exceeds 1/4π [23]. This has been proven to be true in

string theory examples with adjoint matter [24] in the large N , large ’t Hooft coupling

limit. However, recently it has become clear that in models with fundamental matter [25]

this bound is violated at O(1/N). It was shown in [10, 26] that in the presence of an R-

charge chemical potential, i.e. by considering higher derivative corrections to the R-charged

planar AdS black hole, this violation is only enhanced. It is tempting to conjecture that

this violation will persist even for the non-relativistic examples considered in this paper.

Higher derivative corrections in this case will be more nontrivial due to the presence of

background fluxes.7 However, it was found in [10] that the relevant higher derivative terms

necessarily involve a curvature tensor. Hence it is plausible that writing down a general

class of such terms one can extend this analysis to the non-relativistic examples.
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A Conventions and TsT formulae

In this appendix we summarize our conventions and review the general formulae for the TsT

transformation. The type IIB supergravity lagrangian is written in the Einstein frame as:

IIIB =
1

2κ2

[
∫

d10x
√−g R− 1

2

∫

(

dΦ ∧ ⋆dΦ + e−ΦH ∧ ⋆H

+ e2ΦF1 ∧ ⋆F1 + eΦF3 ∧ ⋆F3 +
1

2
F5 ∧ ⋆F5 − C4 ∧H ∧ F3

)

]

,

(A.1)

7An attempt was made in this context for Q = 0 in [27] with the C4 term.
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where κ = 8π7/2gsls
4, H = dB, Fp = dCp−1 and where the modified field strengths Fp are

defined as:

Fp = Fp +H ∧Cp−3 . (A.2)

The self-duality of the five-form, F5 = ⋆F5, is not taken into account by the type IIB

action and has to be imposed on-shell. The equations of motion that descend from the

action (A.1) are:

d ⋆dΦ +
1

2
e−ΦH ∧ ⋆H − e2ΦF1 ∧ ⋆F1 −

1

2
eΦF3 ∧ ⋆F3 = 0 ,

d
[

e−Φ ⋆H
]

+ eΦF1 ∧ ⋆F3 −F5 ∧ F3 = 0 ,

d
[

e2Φ ⋆F1

]

− eΦH ∧ ⋆F3 = 0 , d
[

eΦ ⋆F3

]

+ F5 ∧H = 0 , d ⋆F5 +H ∧ F3 = 0 , (A.3)

and

RMN − 1

2
gMNR =

1

2

(

∂MΦ∂NΦ − 1

2
GMN (∂Φ)2

)

+
1

12
e−Φ

(

3HMPQH
PQ

N − 1

2
GMNH

2

)

+
1

12
eΦ
(

3F(3)MPQF PQ
(3)N − 1

2
GMNF(3)

2

)

(A.4)

+
1

2
e2Φ

(

F(1)MF(1)N − 1

2
GMNF(1)

2

)

+
1

96
F(5)MPQRSF PQRS

(5)N .

In the main text, we use Einstein frame expressions to check equations of motion and

study properties of the solutions such as the thermodynamics. On the other hand, we

usually present the solutions in the string frame, where the expressions, as well as the TsT

transformation rules, are more easily written. We then recall the conversion of the metric

between Einstein and string frame:

ds2(string) = eΦ/2 ds2(Einstein) . (A.5)

Finally, we review the general formulae for the TsT transformation [16] of a type IIB

supergravity background, in the explicit form presented in [17]. Starting with a solution in

the string frame (whose fields we denote with a zero superscript), define eµν = G
(0)
µν +B

(0)
µν .

Identify two U(1) isometries ϕα of the solution and perform a T-duality along ϕ1. Next, in

the T-dual background, shift ϕ2 as ϕ2 → ϕ2 +γϕ1, where γ is a real parameter, and finally

perform another T-duality along ϕ1. The string frame NS-NS fields Eµν = Gµν +Bµν and

Φ of the resulting solution are given by:

Eµν = M











eµν − γ

[

det

(

e12 e1ν
eµ2 eµν

)

− det

(

e21 e2ν
eµ1 eµν

)]

+ γ2 det







e11 e12 e1ν
e21 e22 e2ν
eµ1 eµ2 eµν

















,

e2Φ = Me2Φ
(0)
,

(A.6)

where

M =

{

1 − γ (e12 − e21) + γ2 det

(

e11 e12
e21 e22

)}−1

. (A.7)
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In the R-R sector, the new modified field strengths Fp = Fp +H ∧ Cp−3 are given by:

∑

q

Fq ∧ eB =
∑

q

F (0)
q ∧ eB(0)

+ γ ιϕ1ιϕ2

[

∑

q

F (0)
q ∧ eB(0)

]

, (A.8)

The interior product ι acts on a p-form ωp giving a (p− 1)-form with components:

(ιy ωp)α1···αp−1 = (ωp)y α1···αp−1 . (A.9)

With a suitable gauge choice, (A.8) can be recast in terms of R-R potentials:

∑

q

Cq ∧ eB =
∑

q

C(0)
q ∧ eB(0)

+ γ ιϕ1ιϕ2

[

∑

q

C(0)
q ∧ eB(0)

]

. (A.10)

Formulae (A.8) and (A.10) are to be understood as formal expressions, valid order by order

in the degree of the differential forms.

B Near horizon geometry as a solution to the equations of motion

In this appendix we will show in more detail why the extremal limit allows for a truncated

set of fields which solve the equations of motion in the near horizon limit. For simplicity

we will restrict ourselves to the AdS case. Let us consider the action

I =
1

2ℓ3P

∫

d5x
√−g

[

12

l2
+R− 1

4
F 2

]

. (B.1)

The equations of motion read

Rab −
1

2
Rgab =

1

2
FacFb

c − 1

8
F 2gab +

6

l2
gab , (B.2)

and

∇µF
µν = 0 . (B.3)

The AdS charged planar black hole considered in this paper is a solution to the equations

of motion. Consider the ansatz

ds2 = −f(u)dt2 + g(u)du2 +
r20
l2

(dx2 + dy2 + dz2) ,

At = a(u) .

(B.4)

Here we are anticipating a horizon at r = r0 and are using the coordinates u = r− r0. We

will further demand that a(0) = 0, a′(0) = constant. The equations of motion lead to the

following constraints

24gf = a′2l2 , f ′′a′ − f ′a′′ − (a′)3 = 0 . (B.5)

Now consider a Taylor expansion of f and a

f(u) =

N
∑

n=1

fnu
n , a(u) =

M
∑

m=1

amu
m , (B.6)

– 18 –



J
H
E
P
0
9
(
2
0
0
9
)
0
9
6

where N and M are finite. We want the second of (B.5) to be satisfied. At O(u0) we get

2f2a1 = 2f1a2 + a3
1 . (B.7)

Using the exact known forms of f and a we find that this can only be satisfied for the

extremal case. We have thus proven that only the extremal solution allows for a near

horizon configuration of fields that solves the equations of motion. We should however

point out that this proof may be coordinate dependent and it is possible that a cleverer

choice of coordinates will allow for other solutions.

C Isometries of the near horizon geometry

In the main text, we have presented two geometries that describe the near horizon region

of the black hole (2.14) in the extremal limit. While the background (3.4) contains an

AdS2 factor, the “non-relativistic near horizon limit” (3.2) does not, so we devote this

appendix to a more careful study of its symmetries. The metric involving the x, t, ρ part

of (3.2) reads:

ds2 =
r20
l2
M0

(

−12ρ2

r20
dt2 + dx2 − 12γ2ρ2(dt + dx)2

)

+
l2

12

dρ2

ρ2
. (C.1)

We are looking for transformations

t→ t+ ξt(t, ρ, x) , x→ x+ ξx(t, ρ, x) , ρ→ ρ+ ξρ(t, ρ, x) , (C.2)

which leave the metric invariant. This leads to six equations, corresponding to the coeffi-

cients of dρ2, dt2, dx2, dρdt, dρdx, dtdx. The equation corresponding to the coefficient of

dρ2 reads

ρ∂ρξρ − ξρ = 0 , (C.3)

which leads to ξρ = ρR(t, x). Plugging this into the remaining equations and looking at

the coefficients of dtdρ, dxdρ leads to setting

ξt = T (t, x) +
l4

288ρ2

(

24ρ2γ2 log ρ∂xR− (1 + 24ρ2γ2 log ρ)∂tR
)

,

ξx = X(t, x) − l4 log ρ

12r20

(

(1 + r20γ
2)∂xR− r20γ

2∂tR
)

.

(C.4)

Plugging these into the coefficient of dt2 leads to

−288ρ2(1 + r20γ
2)R (C.5)

−M−1
0

(

288ρ2(1 + r20γ
2)∂tT + 288ρ2r20γ

2∂tX − l4(1 + r20γ
2 + 24ρ2γ2 log ρ)∂2

tR

)

= 0 .

Now noting that R, X, T are only functions or (t, x) we are led to setting R = 0. Solving

for X, T we get

T = − r20γ
2X

1 + r20γ
2

+ τ(x) . (C.6)
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Plugging this into the equations arising from dx2 and dtdx and invoking similar arguments

leads to setting τ and X to be constants. Hence we are led to only the translational

isometries being preserved. It can be checked easily that the flux configuration also respects

these isometries.
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S. Schäfer-Nameki, M. Yamazaki and K. Yoshida, Coset construction for duals of

non-relativistic CFTs, arXiv:0903.4245 [SPIRES];

M. Alishahiha, A. Davody and A. Vahedi, On AdS/CFT of Galilean conformal field theories,

JHEP 08 (2009) 022 [arXiv:0903.3953] [SPIRES];

A. Volovich and C. Wen, Correlation functions in non-relativistic holography,

JHEP 05 (2009) 087 [arXiv:0903.2455] [SPIRES];

A. Karch, P. Surowka and E.G. Thompson, A holographic perspective on non-relativistic

conformal defects, JHEP 06 (2009) 038 [arXiv:0903.2054] [SPIRES];

C.A. Fuertes and S. Moroz, Correlation functions in the non-relativistic AdS/CFT

correspondence, Phys. Rev. D 79 (2009) 106004 [arXiv:0903.1844] [SPIRES];

M. Alishahiha, R. Fareghbal, A.E. Mosaffa and S. Rouhani, Asymptotic symmetry of

geometries with Schrödinger isometry, arXiv:0902.3916 [SPIRES];

Y. Nakayama, M. Sakaguchi and K. Yoshida, Non-relativistic M2-brane gauge theory and

new superconformal algebra, JHEP 04 (2009) 096 [arXiv:0902.2204] [SPIRES];

A. Bagchi and R. Gopakumar, Galilean conformal algebras and AdS/CFT,

JHEP 07 (2009) 037 [arXiv:0902.1385] [SPIRES];

A. Donos and J.P. Gauntlett, Supersymmetric solutions for non-relativistic holography,

JHEP 03 (2009) 138 [arXiv:0901.0818] [SPIRES];

M. Taylor, Non-relativistic holography, arXiv:0812.0530 [SPIRES];

L. Mazzucato, Y. Oz and S. Theisen, Non-relativistic branes, JHEP 04 (2009) 073

[arXiv:0810.3673] [SPIRES];

S.A. Hartnoll and K. Yoshida, Families of IIB duals for nonrelativistic CFTs,

JHEP 12 (2008) 071 [arXiv:0810.0298] [SPIRES].

[7] A. Adams, A. Maloney, A. Sinha and S.E. Vazquez, 1/N effects in non-relativistic

gauge-gravity duality, JHEP 03 (2009) 097 [arXiv:0812.0166] [SPIRES].

[8] H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477

[SPIRES].

[9] M. Cubrovic, J. Zaanen and K. Schalm, Fermions and the AdS/CFT correspondence:

quantum phase transitions and the emergent Fermi-liquid, arXiv:0904.1993 [SPIRES];

A. Akhavan, M. Alishahiha, A. Davody and A. Vahedi, Fermions in non-relativistic

AdS/CFT correspondence, arXiv:0902.0276 [SPIRES].

[10] R.C. Myers, M.F. Paulos and A. Sinha, Holographic hydrodynamics with a chemical

potential, JHEP 06 (2009) 006 [arXiv:0903.2834] [SPIRES].

[11] A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and

catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [SPIRES].

[12] H.S. Reall, Higher dimensional black holes and supersymmetry,

Phys. Rev. D 68 (2003) 024024 [Erratum ibid. D 70 (2004) 089902] [hep-th/0211290]

[SPIRES].

[13] H.K. Kunduri, J. Lucietti and H.S. Reall, Near-horizon symmetries of extremal black holes,

Class. Quant. Grav. 24 (2007) 4169 [arXiv:0705.4214] [SPIRES].

– 21 –

http://arxiv.org/abs/0903.5184
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.5184
http://arxiv.org/abs/0903.4524
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.4524
http://arxiv.org/abs/0903.4245
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.4245
http://dx.doi.org/10.1088/1126-6708/2009/08/022
http://arxiv.org/abs/0903.3953
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.3953
http://dx.doi.org/10.1088/1126-6708/2009/05/087
http://arxiv.org/abs/0903.2455
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.2455
http://dx.doi.org/10.1088/1126-6708/2009/06/038
http://arxiv.org/abs/0903.2054
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.2054
http://dx.doi.org/10.1103/PhysRevD.79.106004
http://arxiv.org/abs/0903.1844
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.1844
http://arxiv.org/abs/0902.3916
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0902.3916
http://dx.doi.org/10.1088/1126-6708/2009/04/096
http://arxiv.org/abs/0902.2204
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0902.2204
http://dx.doi.org/10.1088/1126-6708/2009/07/037
http://arxiv.org/abs/0902.1385
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0902.1385
http://dx.doi.org/10.1088/1126-6708/2009/03/138
http://arxiv.org/abs/0901.0818
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0901.0818
http://arxiv.org/abs/0812.0530
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.0530
http://dx.doi.org/10.1088/1126-6708/2009/04/073
http://arxiv.org/abs/0810.3673
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0810.3673
http://dx.doi.org/10.1088/1126-6708/2008/12/071
http://arxiv.org/abs/0810.0298
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0810.0298
http://dx.doi.org/10.1088/1126-6708/2009/03/097
http://arxiv.org/abs/0812.0166
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.0166
http://arxiv.org/abs/0903.2477
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.2477
http://arxiv.org/abs/0904.1993
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0904.1993
http://arxiv.org/abs/0902.0276
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0902.0276
http://dx.doi.org/10.1088/1126-6708/2009/06/006
http://arxiv.org/abs/0903.2834
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.2834
http://dx.doi.org/10.1103/PhysRevD.60.064018
http://arxiv.org/abs/hep-th/9902170
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9902170
http://dx.doi.org/10.1103/PhysRevD.68.024024
http://arxiv.org/abs/hep-th/0211290
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0211290
http://dx.doi.org/10.1088/0264-9381/24/16/012
http://arxiv.org/abs/0705.4214
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0705.4214


J
H
E
P
0
9
(
2
0
0
9
)
0
9
6

[14] G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy

conjecture for general relativity, Phys. Rev. D 59 (1998) 026005 [hep-th/9808079]

[SPIRES].

[15] R.B. Mann, Solitonic phase transitions of Galilean black holes, arXiv:0903.4228 [SPIRES].

[16] O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry

and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086] [SPIRES].

[17] E. Imeroni, On deformed gauge theories and their string/M-theory duals,

JHEP 10 (2008) 026 [arXiv:0808.1271] [SPIRES].

[18] A. Sinha, J. Sonner and N.V. Suryanarayana, At the horizon of a supersymmetric AdS5 black

hole: isometries and half-BPS giants, JHEP 01 (2007) 087 [hep-th/0610002] [SPIRES].

[19] A. Bergman and O.J. Ganor, Dipoles, twists and noncommutative gauge theory,

JHEP 10 (2000) 018 [hep-th/0008030] [SPIRES];

K. Dasgupta, O.J. Ganor and G. Rajesh, Vector deformations of N = 4 super-Yang-Mills

theory, pinned branes and arched strings, JHEP 04 (2001) 034 [hep-th/0010072] [SPIRES];

A. Bergman, K. Dasgupta, O.J. Ganor, J.L. Karczmarek and G. Rajesh, Nonlocal field

theories and their gravity duals, Phys. Rev. D 65 (2002) 066005 [hep-th/0103090] [SPIRES];

M. Alishahiha and O.J. Ganor, Twisted backgrounds, pp-waves and nonlocal field theories,

JHEP 03 (2003) 006 [hep-th/0301080] [SPIRES].

[20] S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the

thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202

[hep-th/9805156] [SPIRES].

[21] D. Yamada, Thermodynamics of black holes in Schröedinger space,
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